Abstract

BackgroundSchisandrin B (Sch B), the main ingredient of Schisandra chinensis, displays many bioactivities. This study aimed to identify the drug target of Sch B against liver fibrosis and describe the related molecular mechanisms.MethodsThe effects of Sch B on liver fibrosis and macrophage polarization was investigated in vivo and in vitro. Furthermore, we analyzed the regulatory effect of Sch B on peroxisome proliferator-activated receptor gamma (PPARγ).ResultsOur data showed that Sch B dramatically alleviated liver inflammation and fibrosis and inhibited macrophage activation via PPARγ. Sch B binds with PPARγ by molecular docking. Immunofluorescence double staining showed that PPARγ was mainly expressed in macrophages rather than hepatic stellate cells (HSCs) in liver fibrosis. Importantly, Sch B strongly inhibited macrophage polarization in fibrotic livers compared with the model group. Further, the results revealed that Sch B efficiently inhibited macrophage polarization and also decreased the levels of inflammatory cytokines in vitro. Knockdown of PPARγ by small interfering RNA (siRNA) inhibited the effect of Sch B on macrophage polarization. Mechanistically, Sch B regulated macrophage polarization through inhibition of the nuclear factor (NF)-κB signaling pathway via PPARγ both in vivo and in vitro.ConclusionsThese results suggested that Sch B alleviated carbon tetrachloride (CCl4)-induced liver inflammation and fibrosis by inhibiting macrophage polarization via targeting PPARγ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call