Abstract

Tuberculosis (TB) remains among the world’s great public health challenges. Worldwide resurgence of TB is due to two major problems: the AIDS epidemic, which started in the mid-1980s, and the outbreak of multidrug resistant (MDR) TB. Thus, there is an urgent need for anti-TB drugs with enhanced activity against MDR strains. In recent years, Schiff bases of 1H-indole-2,3-diones are reported to exhibit anti-TB activity. On the other hand, several quinolone antibacterial agents have been examined as inhibitors of TB, as well as other mycobacterial infections. Accordingly, the current work involved design and synthesis of Schiff bases of nalidixic acid carbohydrazide and isatin derivatives ( 5, 6a– f and 7, 8a– c). Structures of the synthesized derivatives were confirmed on the bases of spectral methods of analyses. Anti-TB activity of the synthesized derivatives was investigated against four Mycobacterium strains: Mycobacterium intercellulari, Mycobacterium xenopi, Mycobacterium cheleneo and Mycobacterium smegmatis. Modest anti-TB activity was observed within the investigated compounds, however, compound 5f revealed potent anti-TB activity with MIC 0.625 μg/ml, which is 20 times greater than the reference drug isoniazid, INH, (MIC = 12.5 μg/ml). A hypothetical pharmacophore model was built using Molecular Operating Environment (MOE) program and 10 compounds structurally related to the synthesized ones with reported anti-TB activity. The Pharmacophoric model built revealed the necessity of the following pharmacophoric features for anti-TB activity: aromatic center, hydrogen bond acceptor/metal ligator center, hydrogen bond donor center and aromatic center/hydrophobic area. Theses features were consistent with the found anti-TB activity of the tested compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.