Abstract

The controlled preparation of chiral emissive transition metal complexes is fundamental in the field of circularly polarized luminescence (CPL) active molecular materials. For this purpose, enantiopure Zn(ii) complexes 1 and 2 based on a tetradentate salen ligand surrounded by [4]helicene moieties, together with their racemic counterpart 3, have been herein synthesized. Chirality is primarily brought about by chiral 1,2-cyclohexane-diamines. Alternatively, achiral complex 4 based on ortho-phenylene-diamine has been prepared as well. Single crystal X-ray diffraction analyses have been performed on helicenic intermediates 8 and 9 and complexes 1 and 4. Complexes 1 and 4 display the typical tetradentate O,N,N,O coordination around Zn(ii) characteristic of salen ligands, and bear two [4]helicene moieties. The zinc complexes are luminescent in the visible range around 560 nm at room temperature in aerated solutions with the QY reaching ca. 15% for a luminescence lifetime of 5.5 ns. The optical activities of these complexes have been assessed by CD and CPL, and compared to DFT calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call