Abstract

For any flat family of pure-dimensional coherent sheaves on a family of projective schemes, the Harder–Narasimhan type (in the sense of Gieseker semistability) of its restriction to each fiber is known to vary semicontinuously on the parameter scheme of the family. This defines a stratification of the parameter scheme by locally closed subsets, known as the Harder–Narasimhan stratification. In this paper, we show how to endow each Harder–Narasimhan stratum with the structure of a locally closed subscheme of the parameter scheme, which enjoys the universal property that under any base change the pullback family admits a relative Harder–Narasimhan filtration with a given Harder–Narasimhan type if and only if the base change factors through the schematic stratum corresponding to that Harder–Narasimhan type. The above schematic stratification induces a stacky stratification on the algebraic stack of pure-dimensional coherent sheaves. We deduce that coherent sheaves of a fixed Harder–Narasimhan type form an algebraic stack in the sense of Artin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.