Abstract

Schema acquisition processes comprise an essential source of cognitive demands in learning situations. To shed light on related mechanisms and influencing factors, this study applied a continuous multi-measure approach for cognitive load assessment. In a dual-task setting, a sample of 123 student participants learned visually presented symbol combinations with one of two levels of complexity while memorizing auditorily presented number sequences. Learners’ cognitive load during the learning task was addressed by secondary task performance, prosodic speech parameters (pauses, articulation rate), and physiological markers (heart rate, skin conductance response). While results revealed increasing primary and secondary task performance over the trials, decreases in speech and physiological parameters indicated a reduction in the overall level of cognitive load with task progression. In addition, the robustness of the acquired schemata was confirmed by a transfer task that required participants to apply the obtained symbol combinations. Taken together, the observed pattern of evidence supports the idea of a logarithmically decreasing progression of cognitive load with increasing schema acquisition, and further hints on robust and stable transfer performance, even under enhanced transfer demands. Finally, theoretical and practical consequences consider evidence on desirable difficulties in learning as well as the potential of multimodal cognitive load detection in learning applications.

Highlights

  • Looking back in the history of cognitive psychology, there is a long research tradition on cognitive schemata as crucial outcomes of learning processes (Ghosh & Gilboa, 2014)

  • Prior research shows that high levels of extraneous cognitive load (ECL) hamper learning performance, but only if high amounts of intrinsic cognitive load (ICL) are present at the same time (Sweller et al, 1998)

  • Whereas ECL should be minimized and ICL kept at a manageable level, the instructional focus is put on fostering Germane cognitive load (GCL) to achieve optimal learning outcomes

Read more

Summary

Introduction

Looking back in the history of cognitive psychology, there is a long research tradition on cognitive schemata as crucial outcomes of learning processes (Ghosh & Gilboa, 2014). Once knowledge has been acquired successfully, it is represented and organized in small bundles of information that are constructed during learning and applied automatically in later process stages. Research in this field has mainly covered structural aspects (Bartlett, 1932; Rumelhart, 1980) and mechanisms of schema acquisition and adjustment (Piaget, 1952), but less concern was devoted to related demands on learners’ cognitive resources and their changes during the learning process. Whereas intrinsic cognitive load (ICL) results from the number of interrelated elements of information, determining the complexity of the used learning material relative to learners’ previous knowledge, extraneous cognitive load (ECL) is associated with the surrounding instructional situation, i.e., ways of content presentation or situational constraints. Whereas ECL should be minimized and ICL kept at a manageable level, the instructional focus is put on fostering GCL to achieve optimal learning outcomes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call