Abstract

A general mathematical formulation is presented for scheduling of construction projects and applied to the problem of highway construction scheduling. Repetitive and nonrepetitive tasks, work continuity constraints, multiple-crew strategies, and the effects of varying job conditions on the performance of a crew can be modeled. An optimization formulation is presented for the construction project scheduling problem with the goal of minimizing the direct construction cost. The nonlinear optimization is then solved by the neural dynamics model developed recently by Adeli and Park. For any given construction duration, the model yields at the optimum construction schedule for minimum construction cost automatically. By varying the construction duration, one can solve the cost-duration trade-off problem and obtain the global optimum schedule and the corresponding minimum construction cost. The new construction scheduling model provides the capabilities of both the CPM and LSM approaches. In addition, it provides features desirable for repetitive projects such as highway construction and allows schedulers greater flexibility. It is particularly suitable for studying the effects of change order on the construction cost. This research provides the mathematical foundation for development of a new generation of more general, flexible, and accurate construction scheduling systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.