Abstract
This paper addresses a one-machine scheduling problem in which the efficiency of the machine is not constant, that is the duration of a task is longer in badly efficient time periods. Each task has an irregular completion cost. Under the assumption that the efficiency constraints are time-periodic, we show that the special case where the sequence is fixed can be solved in polynomial time. The general case is NP-complete so that we propose a two-phase heuristic to find good solutions. Our approach is tested on problems with earliness-tardiness costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.