Abstract

We consider the problem of scheduling tasks on flow shops when each task may also require the use of additional resources. It is assumed that all operations have unit lengths, the resource requirements are of 0–1 type and there is one type of the additional resource in the system. It is proved that when the number of machines is arbitrary, the problem of minimizing schedule length is NP-hard, even when only one unit of the additional resource is available in the system. On the other hand, when the number of machines is fixed, then the problem is solvable in polynomial time, even for an arbitrary number of resource units available. For the two machine case anO(n log 2 2 n) algorithm minimizing maximum lateness is also given. The presented results are also of importance in some message transmission systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.