Abstract

We study approximation algorithms for scheduling problems with the objective of minimizing total weighted completion time, under identical and related machine models with job precedence constraints. We give algorithms that improve upon many previous 15 to 20-year-old state-of-art results. A major theme in these results is the use of time-indexed linear programming relaxations. These are natural relaxations for their respective problems, but surprisingly are not studied in the literature. We also consider the scheduling problem of minimizing total weighted completion time on unrelated machines. The recent breakthrough result of [Bansal-Srinivasan-Svensson, STOC 2016] gave a $(1.5-c)$-approximation for the problem, based on some lift-and-project SDP relaxation. Our main result is that a $(1.5 - c)$-approximation can also be achieved using a natural and considerably simpler time-indexed LP relaxation for the problem. We hope this relaxation can provide new insights into the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.