Abstract

A cluster tool for semiconductor manufacturing consists of several single-wafer processing chambers and a wafer-handling robot in a closed environment. The use of cluster tools is extended to reentrant processes such as atomic layer deposition, where a wafer visits a processing chamber more than once. Such a reentrant wafer How complicates scheduling and control of the cluster tool and often causes deadlocks. We examine the scheduling problem for a single-armed cluster tool with various reentrant wafer flows. We develop a convenient method of modeling tool operational behavior with reentrant wafer flows using Petri nets. By examining the net model, we then develop a necessary and sufficient condition for preventing a deadlock. We also show that the cycle time for the asymmetric choice Petri net model for a reentrant wafer How can be easily computed by using the equivalent event graph model. From the results, we systematically develop a mixed integer programming model for determining the optimal tool operation sequence, schedule, and cycle time. We also extend a workload measure for cluster tools with reentrant wafer flows. Finally, we discuss how our results can be used for engineering a cluster tool. We compare two proposed strategies, sharing and dedicating, of operating the parallel processing chambers for identical process steps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call