Abstract
At the very core of most automated sorting systems-- for example, at airports for baggage handling and in parcel distribution centers for sorting mail--we find closed-loop tilt tray sortation conveyors. In such a system, trays are loaded with cargo as they pass through loading stations, and are later tilted upon reaching the outbound container dedicated to a shipment's destination. This paper addresses the question of whether the simple decision rules typically applied in the real world when deciding which parcel should be loaded onto what tray are, indeed, a good choice. We formulate a short-term deterministic scheduling problem where a finite set of shipments must be loaded onto trays such that the makespan is minimized. We consider different levels of flexibility in how to arrange shipments on the feeding conveyors, and distinguish between unidirectional and bidirectional systems. In a comprehensive computational study, we compare these sophisticated optimization procedures with widespread rules of thumb, and find that the latter perform surprisingly well. For almost all problem settings, some priority rule can be identified which leads to a low-single-digit optimality gap. In addition, we systematically evaluate the performance gains promised by different sorter layouts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.