Abstract

In this paper, we propose a new issue queue design that is capable of scheduling reusable instructions. Once the issue queue is reusing instructions, no instruction cache access is needed since the instructions are supplied by the issue queue itself. Furthermore, dynamic branch prediction and instruction decoding can also be avoided permitting the gating of the front-end stages of the pipeline (the stages before register renaming). Results using array-intensive codes show that up to 82% of the total execution cycles, the pipeline front-end can be gated, providing a power reduction of 72% in the instruction cache, 33% in the branch predictor, and 21% in the issue queue, respectively, at a small performance cost. Our analysis of compiler optimizations indicates that the power savings can be further improved by using optimized code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.