Abstract

Stable and minimum delay scheduling of wireless downlinks, with time correlated random connectivity between the base station and each associated user, is an important problem in modern communication systems. We assume that the base station of the wireless downlink dynamically switches between the users to transmit packets to each user. The dynamic switching of the base station incurs a reconfiguration delay. We find that as the reconfiguration delay increases the stability region of the wireless downlink with correlated channel connectivity shrinks to that achieved by time sharing among the users over large time periods. Since existing scheduling policies are designed either for single slot reconfiguration delay and correlated random connectivity, or multislot reconfiguration delay but without correlated connectivity, we propose scheduling policies which explicitly takes into account the correlated channel connectivity and multislot reconfiguration delay and show using simulations that the average delay is reduced compared to existing policies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.