Abstract

Parallelization of time-dependent partial differential equations (PDEs) can be accomplished by time decomposition using the parareal algorithm. While the parareal algorithm was designed to enable real-time simulations, it holds particular promise for long time simulations on computational grids and clouds, due its low communication overhead and potential for adaptation to heterogeneous processors. This contribution extends previous work on the scheduling of tasks of the parareal algorithm to resources with heterogeneous CPU performance. Experiments on Amazon's EC2 show the suitability of this algorithm for execution on a heterogeneous cloud platform and its insensitivity to network latency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.