Abstract

With arrival of advanced technologies, automated appliances in residential sector are still in unlimited growth. Therefore, the design of new management schemes becomes necessary to be achieved for the electricity demand in an effort to ensure safety of domestic installations. To this end, the Demand Side Management (DSM) is one of suggested solution which played a significant role in micro-grid and Smart Grid systems. DSM program allows end-users to communicate with the grid operator so they can contribute in making decisions and assist the utilities to reduce the peak power demand through peak periods. This can be done by managing loads in a smart way, while keeping up customer loyalty. Nowadays, several DSM programs are proposed in the literature, almost all of them are focused on the domestic sector energy management system. In this original work, four heuristics optimization algorithms are proposed for energy scheduling in smart home, which are: bat algorithm, grey wolf optimizer, moth flam optimization, algorithm, and Harris hawks optimization (HHO) algorithm. The proposed model used in this experiment is based on two different electricity pricing schemes: Critical-Peak-Price and Real-Time-Price. In addition, two operational time intervals (60 min and 12 min) were considered to evaluate the consumer’s demand and behavior of the suggested scheme. Simulation results show that the suggested model schedules the appliances in an optimal way, resulting in electricity-cost and peaks reductions without compromising users’ comfort. Hence, results confirm the superiority of HHO algorithm in comparison with other optimization techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.