Abstract
The authors present a method for scheduling hydrothermal power systems based on the Lagrangian relaxation technique. By using Lagrange multipliers to relax system-wide demand and reserve requirements, the problem is decomposed and converted into a two-level optimization problem. Given the sets of Lagrange multipliers, a hydro unit subproblem is solved by a merit order allocation method, and a thermal unit subproblem is solved by using dynamic programming without discretizing generation levels. A subgradient algorithm is used to update the Lagrange multipliers. Numerical results based on Northeast Utilities data show that this algorithm is efficient, and near-optimal solutions are obtained. Compared with previous work where thermal units were scheduled by using the Lagrangian relaxation technique and hydro units by heuristics, the new coordinated hydro and thermal scheduling generates lower total costs and requires less computation time. >
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.