Abstract

Problem statement: Now a day’s many researchers try Genetic algorithm based optimization to find near optimal solution for flexible job shop. It is a global search. In Our study in the GA, some changes are made to search locally and globally by adding jumping genes operation. A typical flexible job shop model is considered for this research study. For that layout, five different example problems are formulated for purpose of evaluation. The material flow time for different shop types, processing times of products, waiting times of products, sequences of products are created and given in tabular form. Approach: The one of best evolutionary approach i.e., genetic algorithm with jumping genes operation is applied in this study, to optimize AGV flow time and the performance measures of Flexible Job shop manufacturing system. The non dominated sorting approach is used. Genetic algorithm with jumping genes operator is used to evaluate the method. Results: The AGV flow sequence is found out. Using this flow sequence make span, flow time of products with AGV, completion of the products is minimized. The position of the shop types are calculated for all products. The effectiveness of the proposed method is proved by comparing with Hamed Fazlollahtabar method. Conclusion: It is found that jumping genes genetic algorithm delivered good solutions as like as other evolutionary algorithms. Jumping genes genetic algorithm may applied to Multi objective optimization techniques in future.

Highlights

  • In the classical Job-Shop Scheduling Problem (JSP), n jobs are processed to completion on m unrelated machines

  • It is found that jumping genes genetic algorithm delivered good solutions as like as other evolutionary algorithms

  • Jumping genes genetic algorithm may applied to Multi objective optimization techniques in future

Read more

Summary

Conclusion

It is found that jumping genes genetic algorithm delivered good solutions as like as other evolutionary algorithms.

INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.