Abstract
We investigate two-stage assembly flow shop problems (TAFSP) with considering machines breakdown and minimisation of the expected the weighted sum of makespan and mean of completion time is as objective value. This problem is NP-hard, hence we presented genetic algorithm (GA) and new self adapted differential evolutionary (NSDE) for solving random generated test problems. Artificial neural network (ANN) is applied to set parameters of two proposed algorithms also Taguchi method is used for analysing the effect of parameters of problem. The computational results reveal that NSDE is better than GA and achieve to good solutions in a shorter time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.