Abstract

We consider a multiclass closed queueing network with two single-server stations. Each class requires service at a particular station, and customers change class after service according to specified probabilities. There is a general service time distribution for each class. The problem is to schedule the two servers to maximize the long-run average throughput of the network. By assuming a large customer population and nearly balanced loading of the two stations, the scheduling problem can be approximated by a dynamic control problem involving Brownian motion. A reformulation of this control problem is solved exactly and the solution is interpreted in terms of the queueing network to obtain a scheduling rule. (We conjecture, quite naturally, that the resulting scheduling rule is asymptotically optimal under heavy traffic conditions, but no attempt is made to prove that.) The scheduling rule is a static priority policy that computes an index for each class and awards higher priority at station 1 (respectively, station 2) to classes with the smaller (respectively, larger) values of this index. An analytical comparison of this rule to any other static policy is also obtained. An example is given that illustrates the procedure and demonstrates its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.