Abstract

Enabling computer tasks with different levels of criticality running on a common hardware platform has been an increasingly important trend in the design of real-time and embedded systems. On such systems, a real-time task may exhibit different WCETs (Worst Case Execution Times) in different criticality modes. It is well-known that traditional real-time scheduling methods are not applicable to ensure the timely requirement of the mixed-criticality tasks. In this paper, the authors study a problem of scheduling real-time, mixed-criticality tasks with fault tolerance. An optimal, off-line algorithm is designed to guarantee the most tasks completing successfully when the system runs into the high-criticality mode. A formal proof of the optimality is given. Also, a novel on-line slack-reclaiming algorithm is proposed to recover from computing faults before the tasks' deadline during the run-time. Simulations show that an improvement of about 30% in performance is obtained by using the slack-reclaiming method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.