Abstract

This paper focuses on the production scheduling in MEMS (Micro-Electro Mechanical System) manufacturing. The whole MEMS production process can be organized into 3 sub-processes, i.e., the wafer front-end process, the wafer cap process and the back-end process. Every wafer processed by the wafer front-end process needs to be bonded with a wafer that is manufactured in the wafer cap process, and then it will be sent to the back-end process. Therefore how to synchronize the release of wafers into the front-end process as well as the wafer cap process becomes an important topic. An ineffective coordination will create long cycle time and large WIP (work-in-process). In this paper, four synchronization rules are developed and they are evaluated together with two release rules and five dispatching rules. The performance measures considered are cycle time, throughput rate and WIP. A visual interactive simulation model is constructed to imitate the production line. The simulation results indicate that synchronization rules, release rules, and dispatching rules, have significant impacts on the performance of MEMS manufacturing and the best policy combination is Littlesyn-CONWIP-SRPT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.