Abstract

A single machine is available to process a collection of stochastic tasks. Processing is interrupted when the machine breaks down. We introduce a new model of breakdowns that more realistically incorporates the effects that job processing may have on the machine. This failure propagation model is equivalent to a Bayesian formulation in which learning about breakdown rates occurs as jobs evolve. Optimal scheduling policies are described in terms of Gittins indices and these indices are characterised in two special cases. For example, we obtain conditions which ensure that an optimal policy will only preempt a job's processing either at its completion or at a machine breakdown. We also bound the value lost by simplistic modelling which ignores the learning phenomenon. © 1996 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call