Abstract

This chapter presents a transactive approach to the optimal scheduling for prosumers in coupled electric and natural gas distribution networks, to help the integration of various distributed energy resources (DERs). DERs are co-ordinately operated in the form of a virtual power plant (VPP), which actively participates in the day-ahead and real-time electricity markets, as well as the wholesale gas market. In the day-ahead (DA) electricity and wholesale gas markets, a VPP aims to maximize expected profits by determining the unit commitments and hourly scheduling of DERs. In the real-time (RT) balancing market, a VPP adjusts DER schedules to minimize imbalance costs. This chapter addresses the energy conversions between electric power and gas loads and investigates the interacting operations of electric and gas distribution networks. The simulation results show that hierarchical, coordinated power and gas scheduling can identify more accurate operation plans for coupled transactive energy networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call