Abstract

Scheduling with setup times and learning plays a crucial role in today's manufacturing and service environments where scheduling decisions are made with respect to multiple performance criteria rather than a single criterion. In this paper, we address a bicriteria single machine scheduling problem with job-dependent past-sequence-dependent setup times and job-dependent position-based learning effects. The setup time and actual processing time of a job are respectively unique functions of the actual processing times of the already processed jobs and the position of the job in a schedule. The objective is to derive the schedule that minimizes a linear composite function of a pair of performance criteria consisting of the makespan, the total completion time, the total lateness, the total absolute differences in completion times, and the sum of earliness, tardiness, and common due date penalty. We show that the resulting problems cannot be solved in polynomial time; thus, branch-and-bound (B&B) methods are proposed to obtain the optimal schedules. Our computational results demonstrate that the B&B can solve instances of various size problems with attractive times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.