Abstract

We consider the following queuing system which arises as a model of a wireless link shared by multiple users. There is a finite number N of input flows served by a server. The system operates in discrete time t = 0,1,2,…. Each input flow can be described as an irreducible countable Markov chain; waiting customers of each flow are placed in a queue. The sequence of server states m(t), t = 0,1,2,…, is a Markov chain with finite number of states M. When the server is in state m, it can serve μim customers of flow i (in one time slot).The scheduling discipline is a rule that in each time slot chooses the flow to serve based on the server state and the state of the queues. Our main result is that a simple online scheduling discipline, Modified Largest Weighted Delay First, along with its generalizations, is throughput optimal; namely, it ensures that the queues are stable as long as the vector of average arrival rates is within the system maximum stability region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call