Abstract

An optimization-based algorithm is presented for scheduling hydro power systems with restricted operating zones and discharge ramping constraints. Hydro watershed scheduling problems are difficult to solve because many constraints, continuous and discrete, including hydraulic coupling of cascaded reservoirs have to be considered. Restricted or forbidden operating zones as well as minimum generation limits of hydro units result in discontinuous preferred operating regions, and hinder direct applications of efficient continuous optimization methods such as network flow algorithms. Discharge ramping constraints due to navigational, environmental and recreational requirements in a hydro system add another dimension of difficulty since they couple generation or water discharge across time horizon. Integrated consideration of the above constraints is very challenging. The key idea of this paper is to use additional sets of multipliers to relax discontinuous operating region and discharge ramping constraints on individual hydro units so that a two-level optimization structure is formed. The low level consists of a continuous discharge scheduling subproblem determining the generation levels of all units in the entire watershed, and a number of pure integer scheduling subproblems determining the hydro operating states, one for each unit. The discharge subproblem is solved by a network flow algorithm, and the integer scheduling problems are solved by dynamic programming with a small number of states and well-structured transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.