Abstract

Large industrial sites commonly contain multiple production and utility systems. In practice, integrated optimization is often not possible because the necessary complete information cannot be exchanged between the systems. Often, industrial sites optimize the operation of production and utility systems sequentially without any feedback, which leads to suboptimal operation.In this paper, we propose a method to coordinate between production and utility systems in a multi-leader multi-follower Stackelberg game. The proposed method does not require complete information exchange. The only information exchanged in one feedback loop is the energy demand and demand-dependent energy cost.In two case studies, the method reduces the total production cost by 7.6% and 3.4% compared to the common sequential optimization. These cost savings correspond to 84% and 88% of the potential cost savings by an integrated optimization. In summary, the proposed method reduces cost significantly, while only incomplete information is exchanged between production and utility systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.