Abstract

The blockchain-enabled cloud manufacturing is an emerging service-oriented paradigm, and the scheduling and process optimization for blockchain-enabled cloud manufacturing (SPO-BCMfg) are crucial to achieving the service-oriented goal. The blockchain-enabled cloud manufacturing paradigm improves the collaboration capabilities and information security over the ordinary cloud manufacturing while incorporating distributed storage, consensus mechanism, and cloud-edge collaboration. The above characteristics make SPO-BCMfg a multiobjective scheduling optimization problem. This article establishes the multiobjective SPO-BCMfg model based on a dynamic selection evolutionary algorithm to address the problem. First, we carry out the architecture and the modeling of the blockchain cloud manufacturing system. Then, a novel dynamic selection evolutionary algorithm is proposed, which is used to schedule and optimize the model for the process. In the stage of evolution, the algorithm uses a diversity-based population partitioning technique that utilizes the dynamic distance to realize the selection of elite solutions. The method was experimented on the SPO-BCMfg problem facing five and eight objectives. The experimental results show that the algorithm has a strong processing capacity in terms of convergence and diversity compared with the other advanced evolutionary algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.