Abstract
Numerous optimization problems in production systems can be considered as decision-making processes that determine the best allocation of resources to tasks over time to optimize one or more objectives in concert with big data. Among the optimization problems, production scheduling and routing of robots for material handling are becoming more important due to their impacts on system performance. However, the development of efficient algorithms for scheduling or routing faces several challenges. While the scheduling and vehicle routing problems can be solved by mathematical models such as mixed-integer linear programming to find optimal solutions to smallsized problems, they are not applicable to larger problems due to the nature of NP-hard problems. Thus, further research on machine learning applications to those problems is a significant step towards increasing the possibilities and potentialities of field application. In order to create truly intelligent systems, new frameworks for scheduling and routing are proposed to utilize machine learning (ML) techniques. First, the dynamic single-machine scheduling problem for minimization of total weighted tardiness is addressed. In order to solve the problem more efficiently, a decisiontree-based approach called Generation of Rules Automatically with Feature construction and Treebased learning (GRAFT) is designed to extract dispatching rules from existing or good schedules. In addition to the single-machine scheduling problem, the flexible job-shop scheduling problem with release times for minimizing the total weighted tardiness is analyzed. As a ML-based solution approach, a random-forest-based approach called Random Forest for Obtaining Rules for Scheduling (RANFORS) is developed to solve the problem by generating dispatching rules automatically. Finally, an optimization problem for routing of autonomous robots for minimizing total tardiness of transportation requests is analyzed by decomposing it into three sub-problems. In order to solve the sub-problems, a comprehensive framework with consideration of conflicts between routes is proposed. Especially to the sub-problem for vehicle routing, a new local search algorithm called COntextual-Bandit-based Adaptive Local search with Tree-based regression (COBALT) that incorporates the contextual bandit into operator selection is developed. The findings from my research contribute to suggesting a guidance to practitioners for the applications of ML to scheduling and control problems, and ultimately to lead the implementation of smart factories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.