Abstract

In 1893, Schatunowsky showed that 30 is the largest number all of whose totatives are primes; we show that this result cannot be proved, in any form, in Chebyshev's theorem (Bertrand's postulate), even if all irreducibles are primes. Bonse's inequality is shown to be indeed weaker than Chebyshev's theorem. Schatunowsky's theorem holds in together with Bonse's inequality, the existence of the greatest prime dividing certain types of numbers, and the condition that all irreducibles be prime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.