Abstract
Let 0 < α ≤ 1 and let $\boldsymbol{b}_\alpha^{2}$ be a Hilbert space of all square integrable solutions of a parabolic equation (∂t + (−Δ)α)u = 0 on the upper half space. We study the Toeplitz operators on $\boldsymbol{b}_\alpha^{2}$, which we characterize to be of Schatten class whose exponent is smaller than 1. For the proof, we use an atomic decomposition theorem of parabolic Bergman functions. Generalizations to Schatten class operators for Orlicz type and Herz type are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.