Abstract
We consider the Scharnhorst effect (anomalous photon propagation in the Casimir vacuum) at oblique incidence, calculating both photon speed and polarization states as functions of angle. The analysis is performed in the framework of nonlinear electrodynamics and we show that many features of the situation can be extracted solely on the basis of symmetry considerations. Although birefringence is common in nonlinear electrodynamics it is not universal; in particular we verify that the Casimir vacuum is not birefringent at any incidence angle. On the other hand, group velocity is typically not equal to phase velocity, though the distinction vanishes for special directions or if one is only working to second order in the fine structure constant. We obtain an ``effective metric'' that is subtly different from previous results. The disagreement is due to the way that ``polarization sums'' are implemented in the extant literature, and we demonstrate that a fully consistent polarization sum must be implemented via a bootstrap procedure using the effective metric one is attempting to define. Furthermore, in the case of birefringence, we show that the polarization sum technique is intrinsically an approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.