Abstract

The precise classification of cell types from single-cell RNA sequencing (scRNA-seq) data is pivotal for dissecting cellular heterogeneity in biological research. Traditional graph neural network (GNN) models are constrained by reliance on predefined graphs, limiting the exploration of complex cell-to-cell relationships. We introduce scGraphformer, a transformer-based GNN that transcends these limitations by learning an all-encompassing cell-cell relational network directly from scRNA-seq data. Through an iterative refinement process, scGraphformer constructs a dense graph structure that captures the full spectrum of cellular interactions. This comprehensive approach enables the identification of subtle and previously obscured cellular patterns and relationships. Evaluated on multiple datasets, scGraphformer demonstrates superior performance in cell type identification compared to existing methods and showcases its scalability with large-scale datasets. Our method not only provides enhanced cell type classification ability but also reveals the underlying cell interactions, offering deeper insights into functional cellular relationships. The scGraphformer thus holds the potential to significantly advance the field of single-cell analysis and contribute to a more nuanced understanding of cellular behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.