Abstract

Single-cell RNA sequencing (scRNA-seq) is a key technology for investigating cell development and analysing cell diversity across various diseases. However, the high dimensionality and extreme sparsity of scRNA-seq data pose great challenges for accurate cell type annotation. To address this, we developed a new cell-type annotation model called scGAA (general gated axial-attention model for accurate cell-type annotation of scRNA-seq). Based on the transformer framework, the model decomposes the traditional self-attention mechanism into horizontal and vertical attention, considerably improving computational efficiency. This axial attention mechanism can process high-dimensional data more efficiently while maintaining reasonable model complexity. Additionally, the gated unit was integrated into the model to enhance the capture of relationships between genes, which is crucial for achieving an accurate cell type annotation. The results revealed that our improved transformer model is a promising tool for practical applications. This theoretical innovation increased the model performance and provided new insights into analytical tools for scRNA-seq data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.