Abstract

Many flowering plants adopt self-incompatibility (SI) to maintain their genetic diversity. In species of Solanaceae, Plantaginaceae, and Rosaceae, SI is genetically controlled by a single S-locus with multiple haplotypes. The S-locus has been shown to encode S-RNases expressed in pistil and multiple SLF (S-locus F-box) proteins in pollen controlling the female and male specificity of SI, respectively. S-RNases appear to function as a cytotoxin to reject self-pollen. In addition, SLFs have been shown to form SCF (SKP1/Cullin1/F-box) complexes to serve as putative E3 ubiquitin ligase to interact with S-RNases. Previously, two different mechanisms, the S-RNase degradation and the S-RNase compartmentalization, have been proposed as the restriction mechanisms of S-RNase cytotoxicity allowing compatible pollination. In this study, we have provided several lines of evidence in support of the S-RNase degradation mechanism by a combination of cellular, biochemical and molecular biology approaches. First, both immunogold labeling and subcellular fractionation assays showed that two key pollen SI factors, PhS3L-SLF1 and PhSSK1 (SLF-interacting SKP1-like1) from Petunia hybrida, a Solanaceous species, are co-localized in cytosols of both pollen grains and tubes. Second, PhS3L-RNases are mainly detected in the cytosols of both self and non-self-pollen tubes after pollination. Third, we found that PhS-RNases selectively interact with PhSLFs by yeast two-hybrid and co-immunoprecipitation assays. Fourth, S-RNases are specifically degraded in compatible pollen tubes by non-self SLF action. Taken together, our results demonstrate that SCFSLF-mediated non-self S-RNase degradation occurs in the cytosol of pollen tube through the ubiquitin/26S proteasome system serving as the major mechanism to neutralize S-RNase cytotoxicity during compatible pollination in P. hybrida.

Highlights

  • Self-incompatibility (SI) is a mating strategy that allows individual of a species to discriminate self from non-self, and accept cross-pollen whereas reject self-one

  • Our results demonstrate that SCFSLF-mediated non-self S-RNase degradation occurs in the cytosol of pollen tube through the ubiquitin/26S proteasome system serving as the major mechanism to neutralize S-RNase cytotoxicity during compatible pollination in P. hybrida

  • The PhS1-SLF1 transgene did not show a competitive interaction in the S1Sv transgenic plants (Supplementary Figure S3D, Supplementary Table S4), and the PhSv-SLF1 transgene did not show a competitive interaction in the S3LSv transgenic plants either (Supplementary Figure S3E, Supplementary Table S5), showing that the PhS1-SLF1 and PhSv-SLF1 do not function as the pollen-S at least against Sv-RNase and S3L-RNase, respectively

Read more

Summary

Introduction

Self-incompatibility (SI) is a mating strategy that allows individual of a species to discriminate self (genetically related) from non-self (genetically unrelated), and accept cross-pollen whereas reject self-one. These outcomes are referred to as crosspollen compatibility (CPC) and self-pollen incompatibility (SPI), respectively. Three essential pistil-modifier factors, 120K (120 kDa glycoprotein), HT-B protein and NaStEP (Nicotiana alata stigma expressed protein), have been identified in Nicotiana species (McClure et al, 1999; Hancock et al, 2005; Jimenez-Durán et al, 2013). Suppression of 120K expression by RNAi prevents S-specific pollen rejection

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call