Abstract
We present a multiwavelength (1.16–2.37 μm) view of the debris disk around BD+45°598, using the Subaru Coronagraphic Extreme Adaptive Optics system paired with the Coronagraphic High Angular Resolution Imaging Spectrograph. With an assumed age of 23 Myr, this source allows us to study the early evolution of debris disks and search for forming planets. We fit a scattered light model to our disk using a differential evolution algorithm, and constrain its geometry. We find the disk to have a peak density radius of R 0 = 109.6 au, an inclination of i = 88.1°, and position angle PA = 111.0°. While we do not detect a substellar companion in the disk, our calculated contrast limits indicate sensitivity to planets as small as ∼10M Jup at a projected separation of 12 au of the star, and as small as ∼4M Jup beyond 38 au. When measuring intensity as a function of wavelength, the disk color constrains the minimum dust grain size within a range of ∼0.13–1.01 μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.