Abstract
Video is a rich media widely used in many of our daily life applications like education, entertainment, surveillance, etc. In order to retrieve rapidly, it is necessary to establish digital archive for storing these videos. However, it is not realistic to store vast amounts of video data into digital archive artificially. This paper proposes a new method for the task of video digital archive management by employing scene recognition technology based on extreme learning machine (ELM). This paper only focuses on scene recognition technology which is the key step of digital video archive management. Dense scale invariant feature transform (dense SIFT) features are used as features in this proposed method. The 15-Scenes dataset with more than 4000 images is used. Experimental results have shown that this proposed method achieves not only high recognition accuracy but also extremely low computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.