Abstract

Hyperspectral imaging (HSI) sensors suffer from spatial misregistration, an artifact that prevents the accurate acquisition of the spectra. Physical considerations let us assume that the influence of the spatial misregistration on the acquired data depends both on the wavelength and on the across-track position. A scene-based method, based on edge detection, is therefore proposed. Such a procedure measures the variation on the spatial location of an edge between its various monochromatic projections, giving an estimation for spatial misregistration, and also allowing identification of misalignments. The method has been applied to several hyperspectral sensors, either prism, or grating-based designs. The results confirm the dependence assumptions on lambda and theta, spectral wavelength and across-track pixel, respectively. Suggestions are also given to correct for spatial misregistration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.