Abstract

The spatial pattern and mean-center shift of major terrestrial ecosystems, termed Holdridge Life Zones (HLZ), during the periods from 1961 to 1990 (T1), from 2010 to 2039 (T2), from 2040 to 2069 (T3) and from 2070 to 2099 (T4) were analyzed by combining the zonal patterns of climatic change in China and the climatic change scenarios of HadCM2 and HadCM3. The results showed that nival area would decrease rapidly with temperature increase in the future. HadCM2 and HadCM3 predicted that the nival areas might disappear in 552 years and 204 years, respectively. Using both HadCM2 and HadCM3, the five HLZ types with the largest areal extent are nival zone, cool temperate moist forest, warm temperate moist forest, subtropical moist forest and boreal wet forest, which collectively account for more than 50% of China's land mass. Among these five HLZ types, nival zone, warm temperate moist forest and boreal wet forest would decrease continuously, whereas subtropical moist forest and cool temperate forest would increase continuously during the four periods. HLZ diversity and patch connectivity would increase continuously in the 21st century. The shift distances of mean centers of HLZ types simulated using HadCM3 were markedly greater than those simulated using HadCM2, in general. The results from both HadCM2 and HadCM3 showed that boreal wet forest, subtropical moist forest, tropical dry forest, warm temperate moist forest and subtropical wet forest had bigger shift ranges, indicating that these HLZ types are more sensitive to the climatic change scenarios of HadCM2 and HadCM3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call