Abstract

Responding to the global crises - Covid19 and climate change - governments around the world are formulating green recovery plans to stimulate economic growth, boost clean energy technologies and cut emissions. Potential transition pathways for low carbon energy systems, however, remain as open questions. Generally, the simulation of biomass in the grid models is limited in their tempo-spatial resolution, transition pathways description, and/or biomass feedstock supply representation. This study aims to provide spatio-temporal highly resolved grid configurations featuring disaggregated biomass feedstocks, to assess Australia's potential energy transition pathways and 100% renewable electricity supply scenarios under various biomass bidding strategies and cost assumptions. We find that, as carbon prices increase, bioelectricity will prove to be a cost-effective flexible option compared to other low-carbon (such as CSP) and fossil-based flexible options (e.g. coal and gas), with its generation share reaching ∼9%-12% at higher carbon price scenarios. Biomass power plants can be well suited for operating in gap-filling mode to provide flexible power generation and to facilitate grid stability and load balancing. In light of the high biomass resource potential in Australia, keeping bioelectricity in the generation mix is beneficial for reducing system capacity and cost by 32% and 21%, respectively, under a future renewable-dominated Australian grid system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.