Abstract

A lower bound for a finite-scenario-based chance-constrained program is the quantile value corresponding to the sorted optimal objective values of scenario subproblems. This quantile bound can be improved by grouping subsets of scenarios at the expense of solving larger subproblems. The quality of the bound depends on how the scenarios are grouped. In this paper, we formulate a mixed-integer bilevel program that optimally groups scenarios to tighten the quantile bounds. For general chance-constrained programs, we propose a branch-and-cut algorithm to optimize the bilevel program, and for chance-constrained linear programs, a mixed-integer linear-programming reformulation is derived. We also propose several heuristics for grouping similar or dissimilar scenarios. Our computational results demonstrate that optimal grouping bounds are much tighter than heuristic bounds, resulting in smaller root-node gaps and better performance of scenario decomposition for solving chance-constrained 0-1 programs. Also, the optimal grouping bounds can be greatly strengthened using larger group size. Summary of Contribution: Chance-constrained programs are in general NP-hard but widely used in practice for lowering the risk of undesirable outcomes during decision making under uncertainty. Assuming finite scenarios of uncertain parameter, chance-constrained programs can be reformulated as mixed-integer linear programs with binary variables representing whether or not the constraints are satisfied in corresponding scenarios. A useful quantile bound for solving chance-constrained programs can be improved by grouping subsets of scenarios at the expense of solving larger subproblems. In this paper, we develop algorithms for optimally and heuristically grouping scenarios to tighten the quantile bounds. We aim to improve both the computation and solution quality of a variety of chance-constrained programs formulated for different Operations Research problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call