Abstract

With the development of multi-energy systems and the urgent demand for low-carbon energy provision, the regional integrated energy system (IES) is considered an efficient paradigm to improve energy efficiency and carbon emission reduction. The optimal capacity planning of different IES components is considered a non-trivial task due to the uncertainties of renewable power generation and various demands (e.g., electricity, heating and cooling) as well as the carbon emission constraints. This paper addresses this challenge and presents a scenario-based robust optimal planning solution for the regional low-carbon IES fully considering the economic cost, carbon emission and energy supply reliability. The operational uncertainties of different forms of energy sources and demands are characterized by a controllable generative adversarial network (GAN). The proposed method is extensively assessed based on an IES case study in China through a comparative analysis, the numerical results show that compared with the traditional planning method, the proposed capacity planning solution can reduce the total cost by 4.24% and the carbon emissions by 42.61%, the effectiveness and benefits of the planning solution have been effectively confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.