Abstract
Red, blue, white, pink, or black spots with irregular borders and small lesions on the skin are known as skin cancer that is categorized into two types: benign and malignant. Skin cancer can lead to death in advanced stages, however, early detection can increase the chances of survival of skin cancer patients. There exist several approaches developed by researchers to identify skin cancer at an early stage, however, they may fail to detect the tiniest tumours. Therefore, we propose a robust method for the diagnosis of skin cancer, namely SCDet, based on a convolutional neural network (CNN) having 32 layers for the detection of skin lesions. The images, having a size of 227 × 227, are fed to the image input layer, and then pair of convolution layers is utilized to withdraw the hidden patterns of the skin lesions for training. After that, batch normalization and ReLU layers are used. The performance of our proposed SCDet is computed using the evaluation matrices: precision 99.2%; recall 100%; sensitivity 100%; specificity 99.20%; and accuracy 99.6%. Moreover, the proposed technique is compared with the pre-trained models, i.e., VGG16, AlexNet, and SqueezeNet and it is observed that SCDet provides higher accuracy than these pre-trained models and identifies the tiniest skin tumours with maximum precision. Furthermore, our proposed model is faster than the pre-trained model as the depth of its architecture is not too high as compared to pre-trained models such as ResNet50. Additionally, our proposed model consumes fewer resources during training; therefore, it is better in terms of computational cost than the pre-trained models for the detection of skin lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.