Abstract

BackgroundDifferences in cell-type composition across subjects and conditions often carry biological significance. Recent advancements in single cell sequencing technologies enable cell-types to be identified at the single cell level, and as a result, cell-type composition of tissues can now be studied in exquisite detail. However, a number of challenges remain with cell-type composition analysis – none of the existing methods can identify cell-type perfectly and variability related to cell sampling exists in any single cell experiment. This necessitates the development of method for estimating uncertainty in cell-type composition.ResultsWe developed a novel single cell differential composition (scDC) analysis method that performs differential cell-type composition analysis via bootstrap resampling. scDC captures the uncertainty associated with cell-type proportions of each subject via bias-corrected and accelerated bootstrap confidence intervals. We assessed the performance of our method using a number of simulated datasets and synthetic datasets curated from publicly available single cell datasets. In simulated datasets, scDC correctly recovered the true cell-type proportions. In synthetic datasets, the cell-type compositions returned by scDC were highly concordant with reference cell-type compositions from the original data. Since the majority of datasets tested in this study have only 2 to 5 subjects per condition, the addition of confidence intervals enabled better comparisons of compositional differences between subjects and across conditions.ConclusionsscDC is a novel statistical method for performing differential cell-type composition analysis for scRNA-seq data. It uses bootstrap resampling to estimate the standard errors associated with cell-type proportion estimates and performs significance testing through GLM and GLMM models. We have made this method available to the scientific community as part of the scdney package (Single Cell Data Integrative Analysis) R package, available from https://github.com/SydneyBioX/scdney.

Highlights

  • Differences in cell-type composition across subjects and conditions often carry biological significance

  • Overview of single cell differential composition analysis We developed scDC, a novel approach based on bootstrap resampling, to perform differential cell-type composition analysis

  • Bias-corrected and accelerated (BCa) bootstrap confidence interval for single subject cell-type proportions We examined the effectiveness of various approaches to estimate confidence intervals (CI) associated with celltype proportions at the single subject level

Read more

Summary

Introduction

Differences in cell-type composition across subjects and conditions often carry biological significance. A number of challenges remain with cell-type composition analysis – none of the existing methods can identify cell-type perfectly and variability related to cell sampling exists in any single cell experiment. This necessitates the development of method for estimating uncertainty in cell-type composition. Whilst some research papers draw observations on compositional differences of cell-types between conditions [1, 3, 9], such observations are not accompanied by a measure of uncertainty associated with the estimates. Due to the small sample size of scRNAseq data, fitting a Dirichlet multinomial is not currently feasible

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.