Abstract

Compact thermal models and modeling strategies are today a cornerstone for advanced power management to counteract the emerging thermal crisis for many-core systems-on-chip. System identification techniques allow to extract models directly from the target device thermal response. Unfortunately, standard Least Squares techniques cannot effectively cope with both model approximation and measurement noise typical of real systems. In this work, we present a novel distributed identification strategy capable of coping with real-life temperature sensor noise and effectively extracting a set of low-order predictive thermal models for the tiles of Intel's Single-chip-Cloud-Computer (SCC) many-core prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.