Abstract

Annealed and cold-worked stainless steel 316L samples with machined and polished surfaces were tested in simulated pressurized water reactor (PWR) primary water under slow strain rate tensile (SSRT) test conditions to investigate stress corrosion cracking (SCC) initiation. Roughness, residual stress and cross-sectional microstructure of the as-machined samples were characterized before SSRT tests. Plan view and cross-sectional examinations were performed after the test. Pre-test characterization indicated that a deformation layer was present on the machined surfaces. This deformation layer consisted of an ultrafine-grained layer on the top and deformation bands underneath. The thickness of the deformation layer on the annealed material was greater than that on the cold-worked material. Post-test characterization revealed that the SCC initiation behaviors of the as-machined and polished surfaces were different for both annealed and cold-worked materials. Machining increased SCC initiation susceptibility of the annealed material as many shallow cracks initiated along the machining marks in the machined surface, and it decreased the SCC initiation susceptibility of the cold-worked material as a reduced number of cracks were identified in the machined surface compared to the polished surface. The factors influencing SCC initiation are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call