Abstract

We study the scattering theory for charged Klein-Gordon equations: \[\{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x, D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)= f_{1}, {array}. \] where: \[\epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x),\] describing a Klein-Gordon field minimally coupled to an external electromagnetic field described by the electric potential $v(x)$ and magnetic potential $\vec{b}(x)$. The flow of the Klein-Gordon equation preserves the energy: \[ h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+ \bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x) \d x. \] We consider the situation when the energy is not positive. In this case the flow cannot be written as a unitary group on a Hilbert space, and the Klein-Gordon equation may have complex eigenfrequencies. Using the theory of definitizable operators on Krein spaces and time-dependent methods, we prove the existence and completeness of wave operators, both in the short- and long-range cases. The range of the wave operators are characterized in terms of the spectral theory of the generator, as in the usual Hilbert space case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.