Abstract

We investigate single-particle ballistic scattering on a rectangular barrier in the nodal-line Weyl semimetals. Since the system under study has a crystallographic anisotropy, the scattering properties are dependent on mutual orientation of the crystalline axis and the barrier. To account for the anisotropy, we examine two different barrier orientations. It is demonstrated that, for certain angles of incidence, the incoming particle passes through the barrier with probability of unity. This is a manifestation of the Klein tunneling, a familiar phenomenon in the context of graphene and semimetals with Weyl points. However, the Klein tunneling in the Weyl-ring systems is observed when the angle of incidence differs from 90$^\circ$, unlike the cases of graphene and Weyl-point semimetals. The reflectionless transmission also occurs for the so-called `magic angles'. The values of `the magic angles' are determined by geometrical resonances between the barrier width and the de Broglie length of the scattered particle. In addition, we show that under certain conditions the wave function of the transmitted and reflected particles may be a superposition of two plane waves with unequal momenta. Such a feature is a consequence of the non-trivial structure of the iso-energy surfaces of the nodal-line semimetals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.