Abstract
An exact theoretical formulation is presented for the analysis of a thin-walled pile embedded in an elastic half-space under vertically-incident P-wave excitation. In the framework of three-dimensional elastodynamics and a shell theory, the axisymmetrical wave-scattering problem is shown to be reducible to a set of Fredholm boundary integral equations. With the incorporation of the singular characteristics of the wave-induced contact load distributions into the solution scheme, a computational boundary element method is developed for a rigorous treatment of the seismic soil-structure interaction problem. Typical results for the dynamic contact load distributions, displacements, complex-valued foundation input motion functions, and resonant pile foundation response are included for direct engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.