Abstract

Gapped bilayer graphene can support the presence of intragap states due to kink gate potentials applied to the graphene layers. Electrons in these states display valley-momentum locking, which makes them attractive for topological valleytronics. Here, we show that kink-antikink local potentials enable modulated scattering of topological currents. We find that the kink-antikink coupling leads to anomalous steps in the junction conductance. Further, when the constriction detaches from the propagating modes, forming a loop, the conductance reveals the system energy spectrum. Remarkably, these kink-antikink devices can also work as valley filters with tiny magnetic fields by tuning a central gate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call